Chapter 3

Stoichiometric Calculations

Stoichiometry deals with the ratios in which chemicals react.

3.1 Review of Fundamental Concepts

gram-atomic weight: the weight of a specified number of atoms of that element.

Avogadro's number: 6.022×10²³ atoms/g-at wt.

gram-molecular weight (gmw): the sum of the atoms that make up a compound. gram-formula weight (gfw): molar mass; formula weight; for substances that don't exist as molecules but exist as ionic compounds.

daltons:

the mass of a single carbon-12 atom is equivalent to 12 daltons.

 \Rightarrow 1 dalton=1.661×10⁻²⁴ g

moles: as Avogadro's number of atoms, molecules, ions... moles = $\frac{\text{grams}}{\text{formula weight (g/mol)}}$ $millimoles = \frac{milligrams}{formula weight (mg/mmol)}$ g/mol = mg/mmol , g/m = mg/mL'mol/ml = mmol/ml = molarity

milligrams = millimokes × formula weight (mg/mmol)

3.2 Concentrations of Solutions

Molarity: moles per liter or millimoles per milliliter.

Normality (N): the equivalent per liter equivalent: the mass of material providing Avogadro's number of reacting units. reacting unit: a proton or an electron. equivalent weight: the formula weight divided by the number of reacting units.

number of equivalents (eq) =
$$\frac{\text{wt.}(g)}{\text{eq.wt.}(g/\text{eq})}$$

= normality ($\frac{\text{eq}}{\text{L}}$) × volume (L)
meq = $\frac{\text{mg}}{\text{eq.wt.}(\text{mg/meq})}$
= normality ($\frac{\text{meq}}{\text{mL}}$) × mL
 $\frac{\text{g}}{\text{eq}} = \frac{\text{mg}}{\text{meq}}$, $\frac{\text{eq}}{\text{L}} = \frac{\text{meq}}{\text{mL}} = \text{normality}$

stoichiometry factor, n (units of
$$\frac{eq}{mol}$$
)
equivalents = moles × n ($\frac{eq}{mol}$)
$$N(\frac{eq}{L}) = M(\frac{mol}{L}) \times n(\frac{eq}{mol})$$
eq. wt. ($\frac{g}{eq}$) = $\frac{f. \text{ wt. } (\frac{g}{mol})}{n(\frac{eq}{mol})}$

The number of equivalents depends upon the specific reaction.

Ex:
$$CO_3^{2^-} + H^+ \rightarrow HCO_3^ n = 1$$

 $CO_3^{2^-} + 2H^+ \rightarrow H_2CO_3$ $n = 2$

In clinical chemistry
equivalent:
the number of charges on an ion

Formality (F): used for solution of ionic salts=molarity

 Molality (m): moles per 1000 grams of solvent
 Molal concentrations are not temperature dependent. Analytical concentration: the concentration of total dissolved substance.

Ex:
$$HOAc + H_2O \leftrightarrow H_3O^+ + OAc^-$$

 $HOAc : 0.100 \frac{mol}{0.100L}$
 $\Rightarrow [HOAc] = 0.0987$
 $[OAc^-] = 0.0013 = [H^+] \quad a = 1.3\%$

Density: the weight per unit volume at the specified temperature. g/mL or g/cm³ at 20 .

Specific gravity: the ratio of the mass of a body (usually at 20) to the mass of an equal volume of water at 4 . density=specific gravity at 4 density=specific gravity×0.99823 at 20 Ex: 3.10

Dilutions: millimoles (stock sol'n)=millimoles (final sol'n)

3.3 Expressions of Analytical Results

Results will be reported as concentration on either a weight or a volume basic: the quantity of analyte per unit weight or per volume of sample.

■ Solid Sample:

$$\% \left(\frac{\text{wt/wt}}{\text{wt}} \right) = \left[\frac{\text{wt solute (g)}}{\text{wt sample (g)}} \right] \times 10^2$$

parts per thousand (ppt) : $\left| \frac{\text{wt solute (g)}}{\text{wt sample (g)}} \right| \times 10^3$

parts per million (ppm) : $\left| \frac{\text{wt solute (g)}}{\text{wt sample (g)}} \right| \times 10^6$

parts per billion (ppb) : $\left[\frac{\text{wt solute (g)}}{\text{wt sample (g)}}\right] \times 10^9$

parts per trillion (ppt) : $\frac{\text{wt solute (g)}}{\text{wt sample (g)}} \times 10^{12}$

See Table 3.2

$$ppt = \frac{mg}{g} = \frac{g}{Kg}$$

$$ppm = \frac{\mu g}{g} = \frac{mg}{Kg}$$

$$ppb = \frac{ng}{g} = \frac{\mu g}{Kg}$$

 $1 \text{ ppt} = 10^3 \text{ ppm} = 10^6 \text{ ppb}$, $1 \text{ ppm} = 10^3 \text{ ppb}$ milligram percent (mg%)

= mg of analyte per 100g of sample

Liquid Sample:

weight/weight basis; weight/volume basis

ppt (
$$\frac{\text{wt}}{\text{vol}}$$
) = $\left[\frac{\text{wt. solute (g)}}{\text{vol. sample (mL)}}\right] \times 10^3$

ppm (
$$^{\text{wt}}/_{\text{vol}}$$
) = $\left| \frac{\text{wt. solute (g)}}{\text{vol. sample (mL)}} \right| \times 10^6$

ppb (
$$\frac{\text{wt}}{\text{vol}}$$
) = $\left| \frac{\text{wt. solute (g)}}{\text{vol. sample (mL)}} \right| \times 10^9$

$$ppt = \frac{mg}{mL} = \frac{g}{L}$$

$$ppm = \frac{\mu g}{mL} = \frac{mg}{L}$$

$$ppb = \frac{ng}{mL} = \frac{\mu g}{L}$$

(wt/wt)=(wt/vol)
 when aqueous solutions are dilute
volume/volume basis:

Ex: alcoholic beverage.

Gas Sample: weight/weight , weight/volume , or volume/volume basis

In general:

solid sample: wt/wt

concentrated liquids: wt/wt

dilute liquids: wt/vol

gas sample: vol/vol

```
For expressing the amount of major
  electrolytes in biological fluids: (Na+, K+,
  Ca^{2+}, Mg^{2+}, Cl^{-}, H_{2}PO_{4}^{-}, etc...)
milliequivalent (meq): the number of
  millimoles of analyte multiplied by the
  charge on the analyte ion. \Rightarrow meg/L
      meq = \frac{mg}{eq. wt. (mg/meq)}
                               mg
            = \frac{1}{\text{f. wt. (mg/mmol)}}
                                  n (meg/mmol)
```

Tahla 2 2

Expressing Concentrations as Equivalents of Substances

> Ex: % Fe \leftrightarrow % Fe₂O₃ % Ca²⁺ \leftrightarrow % CaCO₃ \leftrightarrow % CaO

wet weight: the fresh, untreated sample

dry weight: the sample has been dried by heating...

ashed weight: the weight of the ash residue.

3.4 Volumetric Analysis: Stoichiometric Calculation

- 1) rapid
- 2) convenient
- 3) accurate
- 4) readily automated

- Titration Principles:
 - 1) Volumetric titrimetry ⇒ volume
 - 2) Weight or gravimetry titrmetry ⇒ weight
 - 3) Coulometric titrimetry \Rightarrow electricity

Standard solution:

the reagent of known concentration.

Titrant:

the reagent (a standard solution) which is added from a buret to react with the analyte.

Titration:

the process of measuring the volume of titrant required to reach the equivalence point.

- The requirements of a titration:
 - 1. The reaction must be stoichiometric, there must be a well-defined and known reaction between the analyte and the titrant.
 - 2. The reaction should be rapid.
 - 3. There should be no side reactions, and the reaction should be specific.

- 4. There should be a marked change in some property of the solution when the reaction is complete.
 - ⇒ the equilibrium constant of the reaction should be large.
- 5. Equivalence point:

the point in a titration where chemically equivalent amounts of analyte and titrant are present.

End point:

the point in a titration where there is a sudden change in a physical property of the solution, such as the color of an indicator.

Titration error:

difference between equivalence point and end point.

⇒ some method must be available for determining when the equivalence point is reached.

- The reaction should be quantitative
 - ⇒ sharp change will occur at the end point to obtain the desired accuracy.

- Standard Solution:
 - 1) be sufficiently stable
 - 2) react rapidly with the analyte
 - 3) react more or less completely with the analyte
 - 4) undergo a selective reaction with the analyte

- Methods for establishing the concentration of standard solutions:
 - 1) direct method: from primary standard
 - 2) standardization:
 - a) from primary standard
 - b) from secondary standard
 - c) from another standard solution

- Primary Standard:
 - 1. It should be 100.00% pure, or impurity $< 0.01 \sim 0.02\%$.
 - 2. It should be stable to drying temperatures, and it should be stable indefinitely at room temperature.
 - 3. It should be readily available.
 - 4. It should have a high formula weight.
 - 5. It should possess the properties required for a titration.

- Classification of Volumetric Methods:
 - 1. Acid-Base:

HA + OH⁻ → A⁻ + H₂O titrant: NaOH; HCl adding indicator, or by electrode

2. Precipitation:

 $Ag^+ + Cl^- \rightarrow AgCl_{(s)}$ adding indicator, or by electrode 3. Complexometric:

$$Ag^+ + 2CN^- \rightarrow Ag(CN)_2^-$$

titrant: chelating agent

Ex: EDTA

(Ethylenediaminetetraacetic acid)

4. Reduction-Oxidation (redox titration):

$$Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$$

3.5 Molarity Volumetric Calculations

```
moles = \frac{g}{f.w.(g/mol)}
 millimoles = \frac{mg}{f.w.(mg/mmol)}
M = mol/i; M = mmol/ml;
M \times L = mol; M \times mL = mmol
g = mol \times f.w.(g/mol); mg = mmol \times f.wt.(mg/mmol)
g = M \times L \times f.wt.(g/mol); mg = M \times mL \times f.w.(mg/mmol)
```

% A =
$$\frac{\text{mg analyte}}{\text{mg sample}} \times 100\% = \frac{\text{M} \times \text{mL} \times \text{f.w.}}{\text{mg sample}} \times 100\%$$

General Calculations with Molarity:

$$aA + tT \rightarrow P$$

$$mmol_{A} = mmol_{T} \times \frac{a}{t} \frac{mmol A}{mmol T}$$

$$\Rightarrow M_{T} \times mL_{T} \times \frac{a}{t}$$

$$mg_{A} = M_{T} \times mL_{T} \times \frac{a}{t} \times f.w._{A}$$

$$\% A = \frac{M_{T} \times mL_{T} \times \frac{a}{t} \times f.w._{A}}{mg (sample)} \times 100\%$$

Standardization:

```
M_{T} = \frac{\frac{mg_{(s)}}{f.w._{(s)}} \times \frac{t}{s}}{mL_{(T)}} t: titrant s: standard
```

- Back-Titrations:
 - 1) A reaction is show to go to completion
 - 2) A sharp end point cannot be obtained

Ex: in the titration of antacid tablets with a strong acid such as HCl

mmol reagent reacted =mmol taken-mmol back-titrated

3.6 Normality Volumetric Calaulations

$$N = \frac{eq}{L} = \frac{meq}{mL}$$

 $eq = mol \times n \quad meq = mmpl \times n$

Equivalent weight:

the weight of a substance that will furnish one mole of the reacting unit.

$$\begin{split} meq_A &= meq_T \quad meq = N_T \times mL \\ mg_A &= N_T \times mL_T \times eq.wt._A \\ \% &A = \frac{N_T \times mL_T \times eq.wt._A}{mg \, (sample)} \times 100 \, \% \end{split}$$

- Reacting unit in normality calculation:
 - Acid-Base ⇒ reacting unit: H⁺ depends on reaction
 - 2) Reduction-Oxidation ⇒ reacting unit: e⁻
 Ex:

$$5Fe^{2+} + MnO_4^- + 8H^+ \leftrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

$$\% A = \frac{N_T \times mL_T \times eq.wt._A}{mg (sample)} \times 100\%$$

3.7 Titer

Titer=milligrams analyte that react with 1mL of titrant

Ex: a potassium dichromate solution has a titer of 1.267mg Fe

 \Rightarrow w.t._A=Titer×mL

3.8 Weight Relationships: Gravimetric Analysis

$$\begin{aligned} &\mathsf{GF} = \mathsf{gravimetric} \ \mathsf{factor} \\ &= \frac{\mathsf{f.wt.} \ \mathsf{of} \ \mathsf{substance} \ \mathsf{sought}}{\mathsf{f.wt.} \ \mathsf{of} \ \mathsf{substance} \ \mathsf{weight}} \times \frac{\mathsf{a} \ (\mathsf{mol} \ \mathsf{sought})}{\mathsf{b} \ (\mathsf{mol} \ \mathsf{weight})} \\ &\mathsf{mg} \ \mathsf{of} \ \mathsf{analyte} = (\mathsf{mg} \ \mathsf{of} \ \mathsf{weight} \ \mathsf{p.p.t}) \times \mathsf{G.F.} \\ &\mathsf{Ex}: \quad \mathsf{Fe} \longrightarrow \mathsf{Fe_2O_3} \end{aligned}$$

$$GF = \frac{A.wt. of Fe}{F.wt. of Fe_2O_3} \times \frac{2}{1}$$